Biomechanics: past, present and future
Professor Anthony Redmond
Head of Clinical Biomechanics and Physical Medicine
Honorary Professor of Clinical Biomechanics, Staffordshire University
Dr Jill Halstead
Podiatry Research Fellow
Leeds Institute for Molecular Medicine/Leeds Biomedical Research Unit

Biomechanical Research pre – 1980s
- ‘Mainstream’ biomechanics
- Basic modelling
- Winter, Eilfman, Lapidus,
- Wright et al. Close, Isman, Inman

Clinical biomechanics pre 1980s
- Podiatric biomechanics - 1971 a vintage year
 - Root, Orien and Weed
 - Sgarlato, Compendium of podiatric biomechanics. CCPM San Francisco
 - Valmassy

Root derived orthoses
- Root/modified Root Device
- Blake’s Inverted Device
- Kirby’s Medially Skived Device
- Tri-plane wedge

Biomechanics in the 90s
- Reliability studies
- Questioning the dogma
- Competing theories
- Emergence of evidence

Modern day biomechanics
Complex modelling

Multisegment foot models
- Eg Oxford multi (3) segment foot model
- Heidelberg ‘functional segment’
- Used in conjunction with standard models for hip, knee and ankle
- Problems with shod
- Mainly kinematics only

Modelling – finite element and others

AnyBody -Glasgow Maastricht

Does Science help us to understand how foot orthoses work?
- Change Foot Motion versus Modifying Internal Foot Forces
Changing Foot Motion

- Biomechanical Theory and some gait studies suggest:
 - Foot Pain - Relates to ↑ Rearfoot pronation.
- Supported by comparative studies between healthy pain free "normals" and foot pain groups.

![Hindfoot Frontal Plane Kinematics](image)

PhD Results: Greater Rearfoot Eversion (pronation) in participants with midfoot pain (n=15). Compared to control group of norms (n=15).

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Methodology</th>
<th>Biomechanical Measurements</th>
<th>Results</th>
</tr>
</thead>
</table>

Foot Orthoses Change Foot Motion

- Gait Studies in normal healthy and pathological groups:
 - Concentrated on rearfoot pronation
 - Show mixed results:

 + 3° to - 5° Change of rearfoot eversion (pronation)

Changing foot motion

- Selection of Gait Studies:
 - The results are variable in rearfoot eversion (pronation):
 - 2° to 5° Reductions - 10 studies
 - 0 to 1° Reductions - 5 studies
 - 0 to 3° Increases - 8 studies

 + 3° to - 5° Change of rearfoot eversion (pronation)

How do Foot Orthoses Work?

Changing Foot Motion

versus

Modifying Internal Foot Forces
Internal Foot Forces
Difficult to measure
- Common Surrogate Measures - Foot Pressure
- Abnormal Foot Pressure patterns with Foot Pathology
 E.G. Midfoot OA and Healthy Groups
 (e.g. Midfoot OA and Healthy Groups: Rao et al. 2011, Menz et al. 2010)
 Relationship between foot pressure & symptom severity

Finite Element Models
Normal External Foot Pressure compared to Internal Foot Forces

Difficult to measure
- Relationship between foot pressure & symptom severity
 E.G. Midfoot OA and Healthy Groups

Abnormal Foot Pressure patterns with Foot Pathology

Common Surrogate Measures - Foot Pressure

Direct Bone Stress Measurement
Strain Gauges - Highly Invasive
Used mainly in cadavers & some (brave) humans
- Foot Orthoses Can Alter Bone Forces
- Reductions Compression, Tension & Shear Strain
- Metatarsal and Tibia Bones

Modern clinical practice – what do we know?
- Weak evidence for foot orthoses in managing a range of MSK conditions.
- Some effects on patient reported outcomes – but equivocal in different conditions
- Effects on kinematics more limited than expected ... and vary between patients!
- Reasonable data in some specific conditions

Clinical knowledge - summary
The effects of orthoses on the mechanical function of the foot
- Cushioning reduces pressure – indicated for callus and ulcers
- U’s and wings reduce force and pressure – as above plus internal stresses.
- New viscoelastic materials also reduce high frequency force
- Contoured devices are good at redistributing force (and pressure)
- Large changes in internal distribution of forces within the foot are likely brought about by FFO therapy.
- FFO’s change foot kinematics in a predictable manner but foot kinetics are too difficult to measure as yet.
- The effect of altered foot mechanics on kinematics and kinetics of proximal structures is small.
- Locally the effects are large
- Contoured devices are probably not interchangeable with other approaches such as flat FFOs and taping.

A few predictions...
Imaging in biomechanical research

- Standalone – ultrasound, MRI
- Combination techniques

3D bone volumes
3D volume abnormal bone marrow lesions

Markerless technologies
Markerless (ish) technologies

Likely clinical developments

The future:
- Instrumented stocking, scanner room or stereography?
 - Joint motions and forces
 - Pressures (triplanar)
 - Temporal and spatial measures
 - Real time
 - Less than £5 per assessment
- Clinical – PROMS in practice, systematic datasets, affordable dynamic quantification, internal imaging

Thank you