Recognition, Rehabilitation and Prevention of Stress Fracture in Runners

Craig Ranson PhD
Sports Physiotherapist
Stress Fracture in Runners

- Location
- Recognition
- Risk Factors
- Management
- Prevention
Wolff’s Law

“Bone is a living structure and adapts itself to its surroundings and demands placed on it in accordance to mathematical laws”

Julius Wolff, 1892
Bone remodelling

- Resorption
- Reversal
- Resting
- Formation
Aetiology

Load

Accelerated Remodelling

Weakening & crack

Continued over-load

Propagation of micro-cracks

Partial or Complete Fracture
Staging Acute Bone Stress

- **Stress Reaction**
 - Marrow Oedema
 - Periostitis

- **Partial Stress Fracture**
 - Partial disruption of the cortex

- **Complete Stress Fracture**
 - Full thickness cortical breach
Common Locations

High Risk
- Femoral Neck
- Tibia
- Navicula
- Talar Neck
- Base 5th MT

Low Risk
- Sacrum
- Lateral Malleolus
- Calcaneus
- MT 1 - 4
History

- Gradual onset localised pain
- 2 - 6 wks after increase in training load
- Pain at specific stage of session
- Progressively earlier in training
- Rest Pain
- Night Pain
- Crescendo pain
- None of the above!
Examination

- Point Tenderness
- Bony +/- Soft Tissue Swelling
- Impact pain
 - Run on spot
 - Jump
 - Hop
Investigations

Xray

Bone Scan

CT

MRI

Tuesday, 14 September 2010
Investigation Algorithm
MRI +/- CT
Sacral Stress Fracture MRI
Inferior Cortex Femoral Neck
A process, not an event

Bone Stress Injury

Workload & Fatigue

Muscle Balance

Footwear

Technique

Nutrition

Gender

Previous Injury

Surface

Age & Growth

Tuesday, 14 September 2010
Energy, Menstruation and Bone Health

- Energy deficiency
 ‘Female Athlete Triad’

- Amenhorrea
 Sign of insufficient energy for bone formation

- Energy deficiency reduces bone formation within 5 days
Vitamin D and Bone health

• Calcium regulation
 Increases intestinal absorption

• Low Vitamin D – results in increased bone catabolism (to maintain serum Calcium)
Workload

• Too Little
 Lower bone strength
 Unaccustomed use injury

• Too Much
 Overuse injury
Management
High Risk

• Aggressive Management
• Complete Fracture Surgery
• Incomplete NWB immobilisation Surgery?
Pneumatic Boots and Braces
Low Risk

- Conservative
 - Load modification
 - Manage risk factors
- Symptomatic
 - Load modification
 - Manage risk factors
- Asymptomatic
 - Monitoring
Stress Fracture Treatment Options

- Nutrition and Energy Deficit
- Vitamin D Supplementation
- LIPUS (Exogen)
- Medication
 - Nasal Calcitonin
 - Bisphosphonates
 - Stops resorption
 - Old bone stays around
Rehabilitation

- Follow Prevention Principles
- Cross-Training
- Milestones
 - Functional/Symptom & Time based
 - (Kaeding 2005, Ivancovic 2006)
- Team Approach
 - Tackle risk factors
Stress Fracture Prevention
Previous bone stress injury

- Prevention plan in place
- Low threshold for:
 - Reporting
 - Investigating
- Bone Density
 - DEXA
 - pQCT
Nutrition & Supplementation

- Adequate Energy Intake
- Vitamin D and Calcium Supplementation

800 U Vit D and 2g Calcium daily

20% reduction in stress fractures in army recruits (Lappe, 2008)
Allow Time for Bone Adaptation

• 7 - 4 - 2
 In seven days
 4 running/high-impact sessions
 No more than 2 days in a row
Allow Time for Bone Adaptation

- Progress only one parameter at a time
 - Volume
 - Intensity
 - Surface
Surfaces

- **Hardness**
- 1. Grass
- 2. Dirt Road
- 3. Track
- 4. Tarmac & Concrete
- **Hills & Cambers**
Muscle Imbalance

- **Flexibility**

 Stiff foot and ankle = more stress to tibia, femur, sacrum...

- **Strength, Endurance & Control**

 Smaller weaker calves = increased stress fracture risk

“muscle has the ability to absorb 100 times the shock than a bone of the same length” (Popp 09)
Eccentric Soleus Strength
Bent Knee Calf Raise
Eccentric Soleus Strength
Reclining Bent Knee Calf Raise
Footwear

• Appropriate model for foot type & mechanics
• Rotate at least two pairs
• Orthotics
• Socks
Technique & Sub-Optimal Loading

• 1st MT designed to resist bending force
• Lateralised foot loading (low gear)
 MT 2 - 4 stress
• Unchanged technical issues
 Recurrence?
Technique

- GRF
- Foot Mechanics
Stimulating Bone Growth

- High Frequency, Intermittent, Low Intensity, Multidirectional
- 5 - 10 Hz optimal osteogenesis
 - Vibration Plate
- 2 Hz
 - Skipping
 - Jumping
- 40 - 60 Contacts
- Rest Period
Sample Programme

• 2 sessions/day

 1 skipping

 1 multi-directional jump circuit over low hurdles

• 40 contacts/session

• 3 - 5 sessions/week

• Factor in other impact training
Summary

- Determine Risk of Fracture Type
- Multidisciplinary Rehab and Prevention Plan
- Correction of energy deficit
- Check Vitamin D
- Creative, appropriate running and conditioning programs
- Monitoring
ATLAS OF
Living and
Surface Anatomy
for Sports Medicine

Foreword by
Mark E Batt

Philip Harris
Craig Ranson

CHURCHILL LIVINGSTONE ELSEVIER