Pharmacology of Local Anaesthetic drugs

Local Anaesthetics

- Lidocaine hydrochloride (*Xylocaine*)
 - Lidocaine hydrochloride + 1:200,000 adrenaline
- Bupivacaine hydrochloride (*Marcain*)
 Bupivacaine hydrochloride + 1:200,000 adrenaline
- Mepivacaine (*Scandonest*)
- Prilocaine (*Citanest*)
- Levo-Bupivacaine (*Chirocaine*)
- Ropivacaine (*Naropin*)

LAs prevent generation of nerve impulses (action potentials) in pain fibres

- Injected LA diffuses into nerve fibre
 - LA molecule blocks Na⁺channels in nerve fibre membrane
 - Nerve impulse cannot be generated
- LA gradually diffuses out of the nerve fibre
- Nerve function returns to normal
 - Impulse can be generated and propagated
- LA taken up from site of injection into general circulation
- LA metabolised in liver and excreted via kidney

How Local Anaesthetics Work: 1

- Normal (non-anaesthetised) state:
 - − Stimulus to the nerve (fibre OR ending) → Na⁺ channels open in nerve membrane
 - Na⁺diffuses down a concentration gradient from interstitial fluid, into nerve
 - Unstable membrane
 - nerve impulse generated at periphery
 - pain perceived centrally

How Local Anaesthetics Work: 2

LA drug administered

- LA molecules diffuse through nerve membrane
- LA molecules combine with protein in nerve membrane forming the Na⁺ channels \rightarrow blockage of channel

Stable nerve membrane

- No nerve impulse / action potential generated locally
- No pain perceived centrally
- Vasodilatation
- Eventual loss of voluntary muscle contraction

Characteristics of excitable cells e.g.: Nerve tissue

- Potential difference (~70 mvolts) across cell membrane
 - Concentration of Na⁺ is
 - high outside the cell (i.e.: in tissue fluid)
 - low inside the cell (i.e.: in nerve cytoplasm)
- Membrane stimulus provokes a predictable and specific 'all or nothing' electrical reaction by the cell
 - Membrane pores open
 - Na⁺ flows down concentration gradient into cell
 - Equalizes charge either side of membrane
 - Upsets resting state condition (less +ve outside cell)
- Upsets adjacent membrane areas
 - Wave-like membrane instability and movement of ions across membrane
 - Generation of nerve impulse / muscle contraction

The Refractory Period

- Influx of +ve ions across the cell membrane equalizes the charge on either side of the cell membrane
 - The membrane in that area becomes temporarily stable, non-excitable and nonresponsive to further stimulus
- Cell membrane remains stable and non-reactive until the base-line ionic concentrations (inside and outside the excitable cell) have been restored.
 - Na⁺ are 'pumped' out of the cell back into the tissue fluid, across the membrane, against the ionic gradient
 - This is known as the **refractory period**, and normally lasts only milliseconds
- Once the base line state has been restored (i.e.: a high concentration of Na⁺ in tissue fluid and a low concentration of Na⁺ within the nerve cell) that area of cell membrane can once again react to a stimulus.
- LA administration causes a prolonged refractory period in the nerve

Onset of Action

- Lidocaine hydrochloride = 5 mins
- Bupivacaine hydrochloride = 20 mins
- Mepivacaine = 10 mins
- Prilocaine = 10 mins
- Levo-Bupivacaine = 20 mins
- Ropivacaine = 10-30 mins

Duration of Action

- Lidocaine = 1-2 hours
 - Lidocaine + 1:200,000 adrenaline = 2-4 hours
- Bupivacaine = 6-8 hours
 - Bupivacaine + 1:200,000 adrenaline = 12-16 hours
- Mepivacaine = 2-4 hours
- Prilocaine = 2-4 hours
- Levo-Bupivacaine = 5-15 hours
 Up to 30 hours post-op analgesia
- Ropivacaine = 4-8 hours
 - Up to 24 hours post-op analgesia

Cautions

- Do not inject adrenalinised solutions into the distal foot
 - Causes ischaemia
 - 'Chemical tourniquet'
 - Ischaemic effect persists for duration of anaesthesia
- Avoid adrenalinised solutions in patients taking
 - Beta-blockers
 - MAOIs
 - Tri-cyclic anti-depressants

Calculation (in mg) of total LA dose administered from drug labelled as % solution

- Percentage Mass
 - 1% solution = 10mg of drug in 1ml
 - 2% solution = 20 mg of drug in 1ml
 - 3% solution = 30mg of drug in 1ml

• THUS

- 3.5ml of 1% soln delivers 35mg of drug
- 8.3ml of 2% soln delivers 166mg of drug
- 5.6ml of 3% soln delivers 168mg of drug

Maximum safe doses 70Kg or >70Kg person

Lidocaine

- 200mg (3mg / Kg)
- 20ml of 1% OR 10ml of 2% soln
- Bupivacaine / Levobupivacaine
 - 150mg (2mg / Kg)
 - 30ml of 0.5% OR 60ml of 0.25% soln
- Mepivacaine OR Prilocaine
 - 400mg (6mg /Kg)
 - 13ml of 3% soln
 - NB: MSD Mepivacaine for child = 3mg /Kg
- Ropivacaine
 - ~250mg (4mg/Kg)
 - 50ml of 0.5% OR 33ml of 0.75% soln

Maximum Safe Dose for patient <70kg

- MSD of 1% Lidocaine for 68kg person?
 - MSD for 70kg = 200mg
 - MSD for 68kg in mg = 68/70*200 = 195mg
 - MSD of 1% Lidocaine soln for 68kg, in ml = 195/10 = 19.5ml
- MSD of 3% Mepivacaine for 61kg person?
 - MSD for 70kg = 400mg
 - MSD for 61kg in mg = 61/70*400 = 349mg
 - MSD of 3% Mepivacaine soln for 61kg, in ml = 349/30 = 11.6ml
- MSD of 0.5% Bupivacaine for 58kg person?
 - MSD for 70kg = 150mg
 - MSD for 58kg in mg = 58/70*150 = 120mg
 - MSD of 0.5% Bupivacaine soln for 58kg, in ml = 120/5 = 24.25ml

ADRs of LA

• Toxicity (Type A ADR)

- High plasma concentration

- Actual overdose
- Relative overdose
- Faint
 - Vasovagal attack
 - Psychosomatic effect
- Hypersensitivity reactions
 - Rare with amide-type LAs

"We don't have to anesthetize patients anymore. I just walk in with this and they pass out in a second."

Toxic Effect of LAs

• CNS effects

- Inebriation, Lightheaded-ness, Drowsiness
- Numbness of tongue / peri-oral tissues, Paraestheiae
- Restlessness, Nausea + vomiting, Blurred vision
- Muscle twitching, Tremors, Convulsions
- Respiratory failure, Coma
- Cardiovascular effects
 - Myocardial depression
 - Peripheral vasodilatation
 - Hypotension and Bradycardia
 - Arrhythmias and Cardiac arrest

Lidocaine (Lignocaine) plain MSD for a 56Kg child?

- MSD Lidocaine = 3mg drug per Kg body mass
 MSD for this patient = 3x56 = 168mg in total
- 10mg in 1ml of 1% solution

 MSD = 168/10 of 1% lidocaine = 16.8ml
- 20mg in 1 ml of 2% solution

- MSD = 168/20 of 2% lidocaine = 8.4ml

Mepivacaine (Scandanest) plain MSD for a 78Kg adult?

- MSD Mepivacaine = ~ 6mg drug / Kg body mass
 MSD for this patient = 6x78 = 400mg in total
- 10mg in 1ml of 1% solution
 MSD = 400/10 of 1% mepivacaine = 40ml
- 20mg in 1 ml of 2% solution

– MSD = 400/20 of 2% mepivacaine = 20ml

30mg in 1 ml of 3% solution

– MSD = 400/30 of 3% mepivacaine = 13ml

Bupivacaine plain MSD for a 65Kg adult?

- MSD Bupivacaine = 2mg drug per Kg body mass
 MSD for this patient = 2x65 = 130mg in total
- 10mg in 1ml of 1% solution
 MSD = 130/10 of 1% bupivacaine = 13ml
- 5mg in 1 ml of 0.5% solution

– MSD = 130/5 of 0.5% bupivacaine = 26ml

2.5mg in 1 ml of 0.25% solution
 MSD = 130/2.5 of 0.25% bupivacaine = 52ml

Prilocaine (Citanest) plain MSD for a 62Kg adult?

- MSD Prilocaine = ~ 6mg drug / Kg body mass
 MSD for this patient = 6x62 = 372mg
- 10mg in 1ml of 1% solution

 MSD = 372/10 of 1% prilocaine = 37ml
- 20mg in 1 ml of 2% solution

– MSD = 372/20 of 2% prilocaine = 18ml

40mg in 1 ml of 4% solution

 MSD = 372/40 of 4% prilocaine = 9ml

Be cautious in using LAs on these patients

- Children, elderly or debilitated patients
- Impaired cardiac conduction
- Cardiovascular disease
- Hypovolaemia
- Shock
- Impaired respiratory function
- Epilepsy
- Myaesthenia gravis

Contra-Indications to LA

• Inflamed / infected tissues

- Reduced anaesthetic effect
- Increased rate of absorption predisposes to toxicity
- Patients with heart block
- Adrenalinised LA solutions
 - Never into a digit
 - Risk of ischaemic necrosis
 - Not with severe hypotension
 - Not with unstable cardiac rhythm (e.g.: uncontrolled AF)
 - Not with MAOIs and tricyclic antidepressants

Drug Interactions and Local Anaesthetics

- Lidocaine + Cimetidine
 - Lidocaine metabolism reduced / plasma concentration increased
- Lidocaine / Bupivacaine / Levo-bupivacaine / Prilocaine / Ropivacaine + Propanolol / Amiodarone

 Increased myocardial depression
- Lidocaine + antivirals
 - Increased plasma concentration of lidocaine
- Lidocaine + Loop and Thiazide Diuretics
 - Lidocaine effectiveness reduced
- Mepivacaine + opioid sedatives
 - Increased risk of LA toxicity

Drug Interactions and Local Anaesthetics, Contd

- Lidocaine + bupivacaine
 - Increased risk of LA toxicity
 - Total dose should not exceed combined MSDs
- Prilocaine + dapsone
 - Methaemoglobinaemia
- Ropivacaine + Fluvoxamine (Anti-depressant)
 - Ropivaciane metabolism inhibited
- Levo-bupivacaine + TCAs or MAOIs
 - Increased risk of LA toxicity

Anaphylaxis (Type B ADR)

- Drugs: Antibiotics (LAs = rare)
 - Immunologically mediated response
 - Tends to increase with repeat exposure
- Angio-oedema
 - Breathing difficulties (stridor)
 - Hives
 - D+V; abdominal cramps
- Severe hypotension
 - Loss of consciousness
 - Death
- Management
 - Administer adrenaline
 - 0.5ml (0.5mg) 1:1000 adrenaline,
 - Repeated after 5 mins as necessary
 - 999

Adrenaline

Epinephrine (Adrenaline)

- Hormone secreted by the adrenal medulla
 - Catecholamine
- Sympathetic neurotransmitter
 - Nonselective agonist of all (α 1, α 2, β 1, β 2, and β 3) adrenergic receptors
- Participates in the fight or flight response
 - Increases blood glucose levels
 - α-adrenergic receptors: inhibits pancreatic insulin secretion, stimulates pancreatic gluconeogenisis, and skeletal glcyolyisis
 - β-adrenergic receptors: triggers pancreatic glucagon secretion. increases pituitary ACTH secretion, and increases adipose lypolysis
 - Increases heart rate
 - Constricts blood vessels and increases blood pressure
 - Dilates bronchi and bronchioles
 - Increases skeletal muscle contraction

Epinephrine (Adrenaline) Contd.

- Adverse reactions to adrenaline include
 - Palpitations, tachycardia, arrhythmia, anxiety, headache, tremor, hypertension and acute pulmonary oedema
 - Contraindicated in people on non-selective beta-blockers
- Drug of choice for treatment of anaphylaxis
 - Administered as 1:1000 dilution
 - 0.5mg / ml IM, repeated if necessary 5mins later
- Vasoconstrictor action in LA
 - Pre-mix 1:200,000 dilution
 - Reduced dose / prolonged action
 - CI for LA is distal part of the foot
 - Cl for patients on MAOIs